Cyclic AMP regulation of neutrophil apoptosis occurs via a novel protein kinase A-independent signaling pathway.

نویسندگان

  • M C Martin
  • I Dransfield
  • C Haslett
  • A G Rossi
چکیده

The second messenger molecule cyclic AMP dramatically modulates the apoptotic program in a wide variety of cells, accelerating apoptosis in some and delaying the rate of apoptosis in others. Human neutrophil apoptosis, a process that regulates the fate and numbers of these potentially histotoxic cells in inflammatory sites, is profoundly delayed by the cell-permeable analog of cyclic AMP, dibutyryl-cAMP. We have investigated the mechanisms underlying cyclic AMP-mediated delay of neutrophil apoptosis, and we show that cyclic AMP inhibits loss of mitochondrial potential occurring during constitutive neutrophil apoptosis. Furthermore, we demonstrate that cyclic AMP also suppresses caspase activation in these inflammatory cells. Despite increasing protein kinase A activity, this kinase is unlikely to mediate the effect of cyclic AMP on apoptosis because blockade of protein kinase A activation did not influence the survival effects of cyclic AMP. Further investigation of the signaling mechanism demonstrated that the delay of apoptosis is independent of phosphoinositide 3-kinase and MAPK activation. Our results suggest cyclic AMP delays neutrophil apoptosis via a novel, reversible, and transcriptionally independent mechanism. We show that proteasome activity in the neutrophil is vitally involved in this process, and we suggest that a balance of pro-apoptotic and anti-apoptotic proteins plays a key role in the powerful ability of cyclic AMP to delay neutrophil death.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage

Objective(s): AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subject...

متن کامل

بررسی اثر افزایش cAMP بر فسفوریلاسیون پروتئین BAD در رده‌ی سلولی لوسمی لنفوبلاستیک حاد پیش سازB- (NALM-6) تیمارشده با دوکسوروبیسین

Kashiri M1, Safa M2, Kazemi A3 1Dept. of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran 2Cellular and Molecular Research Center, Dept. of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran 3Dept. of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, I...

متن کامل

Cyclic AMP-induced p53 Destabilization is Independent of CREB in pre-B Acute Lymphoblastic Leukemia Cells

Elevated cAMP levels in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells attenuate the doxorubicin-induced p53 accumulation and protect cells against apoptosis. cAMP responsive element binding protein (CREB) is a cAMP-stimulated transcription factor that regulates genes whose deregulated expression cooperatein oncogenesis. In the present study, we investigated the role of CREB on i...

متن کامل

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 48  شماره 

صفحات  -

تاریخ انتشار 2001